Search results

1 – 10 of 20
Open Access
Article
Publication date: 18 November 2020

Yuyang Zhang, Yonggang Leng, Hao Zhang, Xukun Su, Shuailing Sun, Xiaoyu Chen and Junjie Xu

An appropriate equivalent model is the key to the effective analysis of the system and structure in which permanent magnet takes part. At present, there are several equivalent…

4086

Abstract

Purpose

An appropriate equivalent model is the key to the effective analysis of the system and structure in which permanent magnet takes part. At present, there are several equivalent models for calculating the interacting magnetic force between permanent magnets including magnetizing current, magnetic charge and magnetic dipole–dipole model. How to choose the most appropriate and efficient model still needs further discussion.

Design/methodology/approach

This paper chooses cuboid, cylindrical and spherical permanent magnets as calculating objects to investigate the detailed calculation procedures based on three equivalent models, magnetizing current, magnetic charge and magnetic dipole–dipole model. By comparing the accuracies of those models with experiment measurement, the applicability of three equivalent models for describing permanent magnets with different shapes is analyzed.

Findings

Similar calculation accuracies of the equivalent magnetizing current model and magnetic charge model are verified by comparison between simulation and experiment results. However, the magnetic dipole–dipole model can only accurately calculate for spherical magnet instead of other nonellipsoid magnets, because dipole model cannot describe the specific characteristics of magnet's shape, only sphere can be treated as the topological form of a dipole, namely a filled dot.

Originality/value

This work provides reference basis for choosing a proper model to calculate magnetic force in the design of electromechanical structures with permanent magnets. The applicability of different equivalent models describing permanent magnets with different shapes is discussed and the equivalence between the models is also analyzed.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 1 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 18 October 2021

Fan Zhang, Peng Yin, Yuyang Liu and Jianmei Wang

The purpose of this paper is to study the influence of pivot stiffness on the dynamic characteristics of tilting-pad journal bearings (TPJBs) and the stability of the…

Abstract

Purpose

The purpose of this paper is to study the influence of pivot stiffness on the dynamic characteristics of tilting-pad journal bearings (TPJBs) and the stability of the bearing-rotor system.

Design/methodology/approach

A theoretical numerical model is established, and the influences of pivot stiffness on TPJBs and a bearing-rotor system are analyzed. Then, two kinds of pivot structures with different stiffness are designed and the vibration characteristics are tested on the vertical rotor bearing test bench.

Findings

The pivot stiffness has an obvious effect on the dynamic characteristics of the TPJBs and the stability of the bearing-rotor system. As a result of appropriate pivot stiffness, the critical speed and the vibration amplification factor can be reduced, the logarithmic decay rate and the stability of the rotor system can be effectively increased. While the journal whirl orbit is smoother and the rubbing is obviously reduced when the bearings have flexible pivots.

Originality/value

The influence of pivot stiffness on TPJBs and a vertical rotor-bearing system is studied by theoretical and experimental methods.

Details

Industrial Lubrication and Tribology, vol. 73 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 July 2022

Xuejiao Zhang, Yu Yang and Jing Wang

This paper aims to develop a dynamic two-sided stable matching method based on preference information of the matching objects in uncertain environments, so as to solve the…

Abstract

Purpose

This paper aims to develop a dynamic two-sided stable matching method based on preference information of the matching objects in uncertain environments, so as to solve the matching problem of cloud manufacturing tasks and services with load balancing.

Design/methodology/approach

For dynamic two-sided matching, due to the complexity of social environment and the limitation of human cognition, hesitation and fuzziness always exist in the process of multi-criteria assessment. First, in order to obtain the accurate preference information of each matching object, uncertain linguistic variables, uncertain preference ordinal and incomplete complementary matrices are used to evaluate multi-criteria preference information. This process is undertaken by considering the probability of each possible matching pair. Second, the preference information at different times is integrated by using the time-series weight to obtain the comprehensive satisfaction degree matrices of the matching objects. Further, the load adjustment parameter is used to increase the satisfaction degree of the matching objects. Afterward, a dynamic two-sided stable matching optimization model is constructed by considering stable matching conditions. The model aims to maximize the satisfaction degree and minimizes the difference in the satisfaction degree of matching objects. The optimal stable matching results can be obtained by solving the optimization model. Finally, a numerical example and comparative analysis are presented to demonstrate the characteristics of the proposed method.

Findings

Uncertain linguistic variables, uncertain preference orders and incomplete complementary matrices are used to describe multi-criteria preference information of the matching objects in uncertain environments. A dynamic two-sided stable matching method is proposed, based on which a DTSMDM (dynamic two-sided matching decision-making) model of cloud manufacturing with load balancing can be constructed. The study proved that the authors can use the proposed method to obtain stable matching pairs and higher matching objective value through comparative analysis and the sensitivity analysis.

Originality/value

A new method for the two-sided matching decision-making problem of cloud manufacturing with load balancing is proposed in this paper, which allows the matching objects to elicit language evaluation under uncertain environment more flexibly to implement dynamic two-sided matching based on preference information at different times. This method is suitable for dealing with a variety of TSMDM (two-sided matching decision-making) problems.

Details

Kybernetes, vol. 52 no. 11
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 16 October 2018

Na Zhang, Yu Yang, Jiafu Su and Yujie Zheng

Because of the multiple design elements and complicated relationship among design elements of complex products design, it is tough for designers to systematically and dynamically…

Abstract

Purpose

Because of the multiple design elements and complicated relationship among design elements of complex products design, it is tough for designers to systematically and dynamically express and manage the complex products design process.

Design/methodology/approach

To solve these problems, a supernetwork model of complex products design is constructed and analyzed in this paper. First, the design elements (customer demands, design agents, product structures, design tasks and design resources) are identified and analyzed, then the sub-network of design elements are built. Based on this, a supernetwork model of complex products design is constructed with the analysis of the relationship among sub-networks. Second, some typical and physical characteristics (robustness, vulnerability, degree and betweenness) of the supernetwork were calculated to analyze the performance of supernetwork and the features of complex product design process.

Findings

The design process of a wind turbine is studied as a case to illustrate the approach in this paper. The supernetwork can provide more information about collaborative design process of wind turbine than traditional models. Moreover, it can help managers and designers to manage the collaborative design process and improve collaborative design efficiency of wind turbine.

Originality/value

The authors find a new method (complex network or supernetwork) to describe and analyze complex mechanical product design.

Details

Kybernetes, vol. 48 no. 5
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 3 April 2017

Jiafu Su, Yu Yang and Na Zhang

The purpose of this paper is to propose a valid and quantitative measurement method of knowledge diffusion efficiency for the knowledge collaboration networks (KCNs).

Abstract

Purpose

The purpose of this paper is to propose a valid and quantitative measurement method of knowledge diffusion efficiency for the knowledge collaboration networks (KCNs).

Design/methodology/approach

This paper builds a weighted KCN model with the node and edge weights. Based on the weighted KCN, the factors of knowledge diffusion efficiency are proposed and analyzed. Then, the knowledge transfer effect between two nodes is proposed and measured by comprehensively integrating the above factors. Furthermore, the main metric of efficiency of knowledge diffusion is proposed by modifying Latora and Marchiori’s model of efficiency of network.

Findings

A case is studied to illustrate the applicability of the proposed weighted network model and the knowledge diffusion efficiency measurement method. The results show the methods proposed in this paper can better measure and analyze the knowledge diffusion efficiency of KCNs than the traditional un-weighted methods and the subjective evaluation methods.

Originality/value

The real KCNs are always weighted networks. The weighted model of KCN can better reflect the real networks than the un-weighted model. Based on the weighted networks, the measurement methods proposed in this paper can more efficiently and accurately measure and evaluate the knowledge diffusion efficiency than the traditional methods. This study can help researchers to better understand knowledge diffusion theoretically, and provide managers with a decision support for knowledge management in practice.

Article
Publication date: 26 October 2018

Pei Wei, Zhengying Wei, Zhne Chen, Jun Du, Yuyang He and Junfeng Li

This paper aims to study numerically the influence of the applied laser energy density and the porosity of the powder bed on the thermal behavior of the melt and the resultant…

Abstract

Purpose

This paper aims to study numerically the influence of the applied laser energy density and the porosity of the powder bed on the thermal behavior of the melt and the resultant instability of the liquid track.

Design/methodology/approach

A three-dimensional model was proposed to predict local powder melting process. The model accounts for heat transfer, melting, solidification and evaporation in granular system at particle scale. The proposed model has been proved to be a good approach for the simulation of the laser melting process.

Findings

The results shows that the applied laser energy density has a significantly influence on the shape of the molten pool and the local thermal properties. The relative low or high input laser energy density has the main negative impact on the stability of the scan track. Decreasing the porosity of the powder bed lowers the heat dissipation in the downward direction, resulting in a shallower melt pool, whereas pushing results in improvement in liquid track quality.

Originality/value

The randomly packed powder bed is calculated using discrete element method. The powder particle information including particle size distribution and packing density is taken into account in placement of individual particles. The effect of volumetric shrinkage and evaporation is considered in numerical model.

Details

Rapid Prototyping Journal, vol. 25 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 June 2017

Feng Luo, Guodong Li and Hao Zhang

The purpose of this paper is to obtain the mechanical behavior and damage mechanism of the coal and rock near the stope under the stress state and stress paths of the surrounding…

Abstract

Purpose

The purpose of this paper is to obtain the mechanical behavior and damage mechanism of the coal and rock near the stope under the stress state and stress paths of the surrounding rock with the dynamic mining.

Design/methodology/approach

Through the three-axial compression test and the uniaxial compression test by meso experiment device, the mechanical behavior and fracture evolution process of coal and rock were studied, and the acoustic emission (AE) characteristics under uniaxial compression of the coal and rock were contrasted.

Findings

Under the three-axial compression, the strength of coal and rock enhance significantly by confining pressure. The volume of outburst coal shows obvious stages: compression is followed by expansion. The coal first appear to undergo compaction under vertical stress due to volume decrease, but with the development of micro- and macro-cracks, the specimens appeared to expand; under the uniaxial compression, through the comparison of stress–strain relationship and the crack propagation process, stress drop and fracture of coal have obvious correlation. The destruction of coal was gradual due to the slow and steady accumulation of internal damage. Due to the influence of the end effect, the specimens show the “conjugate double shear failure”. The failure process of the coal and rock and the characteristics of the AEs have a corresponding relationship: the failure causes a large number of AE events. Before the events peak, there was an initial stage, calm growth stage and explosive growth stage. There were some differences between the rock and coal in the characteristics of the AE.

Originality/value

These research studies are conducted to provide guidance on the basis of mine disaster prevention and control.

Details

World Journal of Engineering, vol. 14 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 6 August 2018

Fenyi Dong, Bing Qi and Yuyang Jie

The purpose of this paper is to cluster and analyse the level of agricultural science and technology in China’s provinces by using grey clustering model, to have an overall…

Abstract

Purpose

The purpose of this paper is to cluster and analyse the level of agricultural science and technology in China’s provinces by using grey clustering model, to have an overall understanding of the current situation of agricultural science and technology development in these provinces, and to offer a reference for decision-making departments to draw up agricultural science and technology development plans.

Design/methodology/approach

First of all, the grey clustering assessment is used to evaluate the clustering of agricultural science and technology level in China’s provinces in 2011, 2013 and 2015. Also a comparative static analysis is made. Then, based on the prediction data of GM (1,1) model, the provincial agricultural science and technology levels in 2017 and 2019 are analysed by grey clustering. Finally, some suggestions are put forward, such as adjusting the allocation of agricultural science and technology resources and providing policy preferences to backward areas, so as to promote the coordinated development of agricultural science and technology in China.

Findings

The development of agricultural science and technology in various provinces and regions of the authors’ country is unbalanced, with a big gap of agricultural and technology level between different provinces. What’s more, the level of agricultural science and technology in remote areas has been developing slowly, but it has been lagging behind. Through the grey clustering analysis of the provincial agricultural science and technology level in 2017 and 2019, it is concluded that the level of agricultural science and technology will be promoted as a whole, but the gap of agricultural science and technology level between different provinces and cities will be enlarged.

Research limitations/implications

This paper comprehensively studies the current situation and future development trends of agricultural science and technology in China’s provinces in recent years, and preliminarily analyses the reasons for the transformation of agricultural science and technology level, however, with no further inspection. Related research should be made for further study.

Practical implications

This paper will provide overall understanding of the current situation of agricultural science and technology development in China’s provinces and cities, and put forward relevant suggestions for the future development of agricultural science and technology in China’s provinces and cities, and provide references for decision-making departments to draw up agricultural science and technology development plans.

Originality/value

For the first time, the grey clustering method is used to the research of agricultural science and technology level in the province. It analyses and evaluates the past and present situation and predicts the future development trend of provincial agricultural science and technology level by the grey clustering analysis method, which is a complete research.

Details

Grey Systems: Theory and Application, vol. 8 no. 4
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 5 January 2022

Yonghong Fu, Jie Yang, Hao Wang and Yuyang He

This study aims to investigate the efficacy of micro dimple in inhibiting stick-slip phenomenon on the sliding guideway.

Abstract

Purpose

This study aims to investigate the efficacy of micro dimple in inhibiting stick-slip phenomenon on the sliding guideway.

Design/methodology/approach

In this study, micro-dimples were fabricated by laser on surfaces of steel disk and guideway. The disks and guideways were respectively performed pin-on-disk tribological tests and working condition experiments to study differences in lubrication condition and friction stability between textured and untextured surfaces.

Findings

Micro-dimples help reduce critical sliding speed that allows contact surfaces to enter in hydrodynamic lubrication regime. This increases hydrodynamic lubrication range and narrows speed range where stick-slip phenomenon can occur, enhancing sliding guideway’s adaptability for broader working conditions. Furthermore, friction stability on the textured surface improved, lowering the occurrence possibility of stick-slip phenomenon. Finally, difference between static and kinetic frictions on the textured surface is lower relative to the untextured surface, which decreases the critical velocity when the stick-slip phenomenon occurs.

Originality/value

The results indicate that laser-textured micro-dimples are significantly conducive to inhibit stick-slip phenomenon, thus providing smoother movement for the guideway and eventually increasing precision of the machine.

Details

Industrial Lubrication and Tribology, vol. 74 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 15 March 2022

Shaoyu Zeng, Yinghui Wu and Yang Yu

The paper formulates a bi-objective mixed-integer nonlinear programming model, aimed at minimizing the total labor hours and the workload unfairness for the multi-skilled worker…

Abstract

Purpose

The paper formulates a bi-objective mixed-integer nonlinear programming model, aimed at minimizing the total labor hours and the workload unfairness for the multi-skilled worker assignment problem in Seru production system (SPS).

Design/methodology/approach

Three approaches, namely epsilon-constraint method, non-dominated sorting genetic algorithm 2 (NSGA-II) and improved strength Pareto evolutionary algorithm (SPEA2), are designed for solving the problem.

Findings

Numerous experiments are performed to assess the applicability of the proposed model and evaluate the performance of algorithms. The merged Pareto-fronts obtained from both NSGA-II and SPEA2 were proposed as final solutions to provide useful information for decision-makers.

Practical implications

SPS has the flexibility to respond to the changing demand for small amount production of multiple varieties products. Assigning cross-trained workers to obtain flexibility has emerged as a major concern for the implementation of SPS. Most enterprises focus solely on measures of production efficiency, such as minimizing the total throughput time. Solutions based on optimizing efficiency measures alone can be unacceptable by workers who have high proficiency levels when they are achieved at the expense of the workers taking more workload. Therefore, study the tradeoff between production efficiency and fairness in the multi-skilled worker assignment problem is very important for SPS.

Originality/value

The study investigates a new mixed-integer programming model to optimize worker-to-seru assignment, batch-to-seru assignment and task-to-worker assignment in SPS. In order to solve the proposed problem, three problem-specific solution approaches are proposed.

Details

Kybernetes, vol. 52 no. 9
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 10 of 20